

Chapter 4 The Valuation of Long-Term **Securities**

© Pearson Education Limited 2004 Fundamentals of Financial Management, 12/e Created by: Gregory A. Kuhlemeyer, Ph.D. Carroll College, Waukesha, WI

After studying Chapter 4, you should be able to:

- 1. Distinguish among the various terms used to express value.
- 2. Value bonds, preferred stocks, and common stocks.
- 3. Calculate the rates of return (or yields) of different types of long-term securities.
- 4. List and explain a number of observations regarding the behavior of bond prices.

- Distinctions Among Valuation
 Concepts
- Bond Valuation
- Preferred Stock Valuation
- Common Stock Valuation
- Rates of Return (or Yields)

What is Value?

- Liquidation value represents the amount of money that could be realized if an asset or group of assets is sold separately from its operating organization.
- Going-concern value represents the amount a firm could be sold for as a continuing operating business.

Book value represents either

- (1) <u>an asset</u>: the accounting value of an asset -- the asset's cost minus its accumulated depreciation;
- (2) <u>a firm</u>: total assets minus liabilities and preferred stock as listed on the balance sheet.

Market value represents the market price at which an asset trades.

Intrinsic value represents the price a security "ought to have" based on all factors bearing on valuation.

- Important Terms
- Types of Bonds
- Valuation of Bonds
- Handling Semiannual Compounding

Important Bond Terms

- A <u>bond</u> is a long-term debt instrument issued by a corporation or government.
- The <u>maturity value</u> (MV) [or face value] of a bond is the stated value. In the case of a U.S. bond, the face value is usually \$1,000.

Important Bond Terms

- The bond's <u>coupon rate</u> is the stated rate of interest; the annual interest payment divided by the bond's face value.
- The <u>discount rate</u> (capitalization rate) is dependent on the risk of the bond and is composed of the risk-free rate plus a premium for risk.

A perpetual bond is a bond that *never* matures. It has an infinite life.

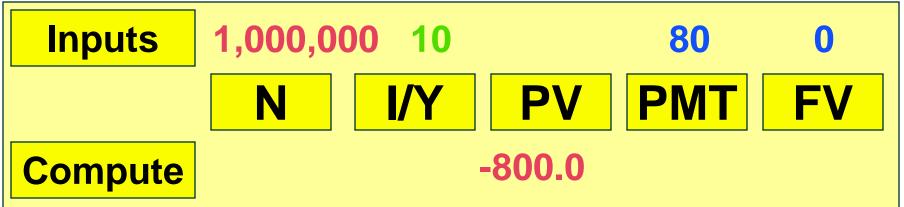
$$V = \frac{1}{(1 + k_d)^1} + \frac{1}{(1 + k_d)^2} + \dots + \frac{1}{(1 + k_d)^\infty}$$
$$= \sum_{t=1}^{\infty} \frac{1}{(1 + k_d)^t} \quad \text{or} \quad I (PVIFA_{k_d,\infty})$$
$$V = I / k_d \quad [Reduced Form]$$

Perpetual Bond Example

Bond P has a \$1,000 face value and provides an 8% annual coupon. The appropriate discount rate is 10%. What is the value of the perpetual bond?

- = \$1,000 (8%) = <mark>\$80</mark>.
- k_d = 10%.
- $V = I / k_d$ [Reduced Form]

= \$80 / 10% = \$800.



- N: "Trick" by using <u>huge</u> N like 1,000,000!
- I/Y: 10% interest rate per period (enter as 10 NOT .10)
- **PV:** Compute (Resulting answer is cost to purchase)
- PMT: \$80 annual interest forever (8% x \$1,000 face)
- FV: \$0 (investor never receives the face value)

A <u>non-zero coupon-paying bond</u> is a coupon paying bond with a finite life.

$$V = \frac{I}{(1 + k_{d})^{1}} + \frac{I}{(1 + k_{d})^{2}} + \dots + \frac{I + MV}{(1 + k_{d})^{n}}$$
$$= \sum_{t=1}^{n} \frac{I}{(1 + k_{d})^{t}} + \frac{MV}{(1 + k_{d})^{n}}$$
$$V = I (PVIFA_{k_{d}}, n) + MV (PVIF_{k_{d}}, n)$$

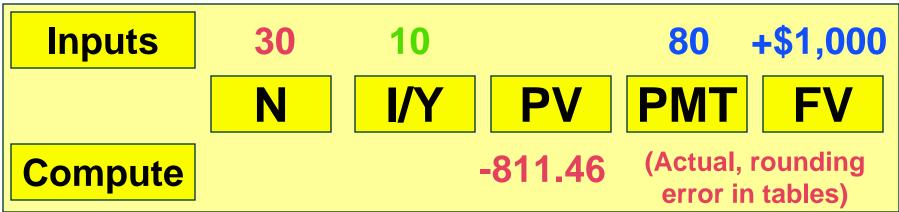
4-1

Bond C has a \$1,000 face value and provides an 8% annual coupon for 30 years. The appropriate discount rate is 10%. What is the value of the coupon bond?

V =
$$\$80 (PVIFA_{10\%, 30}) + \$1,000 (PVIF_{10\%, 30})$$

= $\$80 (9.427) + \$1,000 (.057)$
[*Table IV*] [*Table II*]
= $\$754.16 + \57.00
= $\$811.16$.

Solving the Coupon Bond on the Calculator



- N: 30-year annual bond
- I/Y: 10% interest rate per period (enter as 10 NOT .10)
- **PV: Compute (Resulting answer is cost to purchase)**
- PMT: \$80 annual interest (8% x \$1,000 face value)
- FV: \$1,000 (investor receives face value in 30 years)

Different Types of Bonds

A <u>zero coupon bond</u> is a bond that pays no interest but sells at a deep discount from its face value; it provides compensation to investors in the form of price appreciation.

$$V = \frac{MV}{(1 + k_d)^n} = MV (PVIF_{k_d, n})$$

Bond Z has a \$1,000 face value and a 30 year life. The appropriate discount rate is 10%. What is the value of the zero-coupon bond?

V = \$1,000 (PVIF_{10%, 30}) = \$1,000 (.057) = \$57.00

Solving the Zero-Coupon Bond on the Calculator



- N: 30-year zero-coupon bond
- I/Y: 10% interest rate per period (enter as 10 NOT .10)
- **PV:** Compute (Resulting answer is cost to purchase)
- **PMT: \$0 coupon interest since it pays no coupon**
- FV: \$1,000 (investor receives only face in 30 years)

4-18

Most bonds *in the U.S.* pay interest twice a year (1/2 of the annual coupon).

Adjustments needed:

- (1) Divide k_d by 2
- (2) Multiply n by 2
- (3) Divide by 2

A <u>non-zero coupon bond</u> adjusted for semiannual compounding.

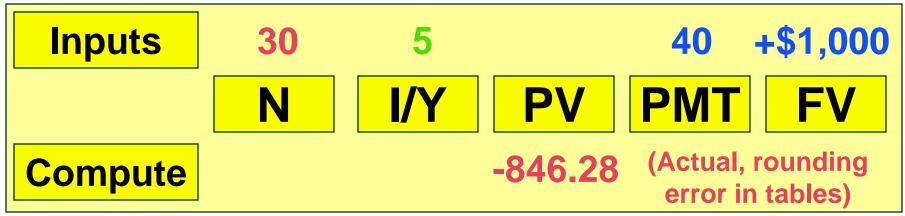
$$V = \frac{\frac{1}{2}}{(1 + \frac{k_d}{2})^1} + \frac{\frac{1}{2}}{(1 + \frac{k_d}{2})^2} + \dots + \frac{\frac{1}{2 + MV}}{(1 + \frac{k_d}{2})^{2*n}}$$
$$= \frac{2^*n}{\sum_{t=1}^{2^*n} \frac{1}{(1 + \frac{k_d}{2})^t}} + \frac{MV}{(1 + \frac{k_d}{2})^{2*n}}$$
$$= \frac{1/2 (PVIFA_{k_d}/2)^t}{(PVIFA_{k_d}/2)^{2*n}} + MV (PVIF_{k_d}/2)^{2*n}$$

4-20

Bond C has a \$1,000 face value and provides an 8% semiannual coupon for 15 years. The appropriate discount rate is 10% (annual rate). What is the value of the *coupon bond*?

 $V = $40 (PVIFA_{5\%, 30}) + $1,000 (PVIF_{5\%, 30})$ = \$40 (15,373) + \$1,000 (.231) [*Table IV*] [*Table II*] = \$614.92 + \$231.00 = \$845.92

The Semiannual Coupon Bond on the Calculator

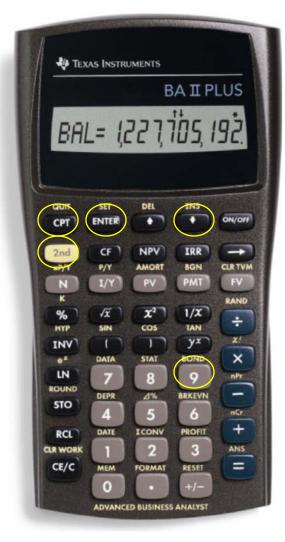


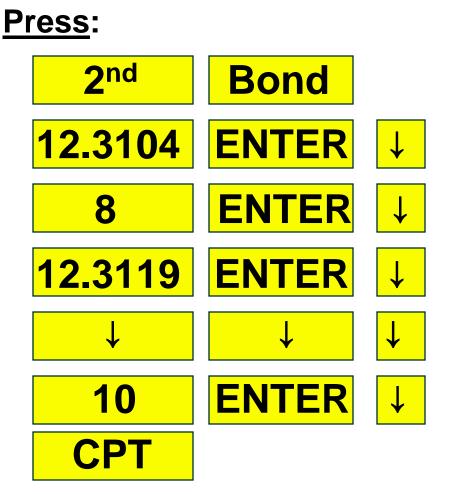
- N: 15-year semiannual coupon bond (15 x 2 = 30)
- I/Y: 5% interest rate per semiannual period (10 / 2 = 5)
- **PV: Compute (Resulting answer is cost to purchase)**
- PMT: \$40 semiannual coupon (\$80 / 2 = \$40)
- FV: \$1,000 (investor receives face value in 15 years)

Let us use another worksheet on your calculator to solve this problem. Assume that Bond C was purchased (settlement date) on 12-31-2004 and will be redeemed on 12-31-2019. This is identical to the 15year period we discussed for Bond C.

What is its percent of par? What is the value of the bond?

Solving the Bond Problem





- 1. What is its percent of par?
 - 84.628% of par (as quoted in financial papers)

2. What is the value of the bond?

♦ 84.628% x \$1,000 face value = <u>\$846.28</u>

Preferred Stock Valuation

Preferred Stock is a type of stock that promises a (usually) fixed dividend, but at the discretion of the board of directors.

Preferred Stock has preference over common stock in the payment of dividends and claims on assets.

Preferred Stock Valuation

$$V = \frac{\text{Div}_{P}}{(1 + k_{P})^{1}} + \frac{\text{Div}_{P}}{(1 + k_{P})^{2}} + \dots + \frac{\text{Div}_{P}}{(1 + k_{P})^{\infty}}$$
$$= \sum_{t=1}^{\infty} \frac{\text{Div}_{P}}{(1 + k_{P})^{t}} \quad \text{or } \text{Div}_{P}(\text{PVIFA}_{k_{P},\infty})$$
$$\frac{\text{This reduces to a perpetuity!}}{V = \text{Div}_{P} / k_{P}}$$

Preferred Stock Example

Stock PS has an 8%, \$100 par value issue outstanding. The appropriate discount rate is 10%. What is the value of the preferred stock?

Div_P	= \$100 (8%) = <mark>\$8.00</mark> .
k _P	= 10% .
V	$= Div_P / k_P = $ \$8.00 / 10%
	= \$80

Common Stock Valuation

Common stock represents a residual ownership position in the corporation.

- Pro rata share of future earnings after all other obligations of the firm (if any remain).
- Dividends <u>may</u> be paid out of the pro rata share of earnings.

What cash flows will a shareholder receive when owning shares of **common stock**?

- (1) Future dividends
- (2) Future sale of the common stock shares

Basic dividend valuation model accounts for the PV of all future dividends.

$$V = \frac{\text{Div}_{1}}{(1 + k_{e})^{1}} + \frac{\text{Div}_{2}}{(1 + k_{e})^{2}} + \dots + \frac{\text{Div}_{\infty}}{(1 + k_{e})^{\infty}}$$
$$= \sum_{t=1}^{\infty} \frac{\text{Div}_{t}}{(1 + k_{e})^{t}} \quad \text{Div}_{t}: \text{ Cash Dividend}$$
$$at time t$$
$$k_{e}: \text{ Equity investor's required return}$$

4-31

The basic dividend valuation model adjusted for the future stock sale.

$$V = \frac{Div_1}{(1 + k_e)^1} + \frac{Div_2}{(1 + k_e)^2} + \dots + \frac{Div_n + Price_n}{(1 + k_e)^n}$$

n:	The year in which the firm's
	shares are expected to be sold.
Price _n :	The expected share price in year n.

The dividend valuation model requires the forecast of <u>all</u> future dividends. The following dividend growth rate assumptions simplify the valuation process.

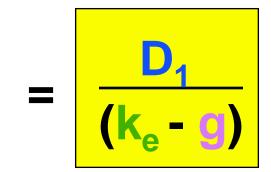
Constant Growth

No Growth

Growth Phases

The constant growth model assumes that dividends will grow forever at the rate g.

$$V = \frac{D_0(1+g)}{(1+k_e)^1} + \frac{D_0(1+g)^2}{(1+k_e)^2} + \dots + \frac{D_0(1+g)^{\infty}}{(1+k_e)^{\infty}}$$



- D_1 : Dividend paid at time 1.
 - : The constant growth rate.
- k_e: Investor's required return.

4-34

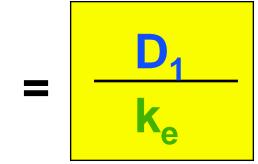
Stock CG has an expected dividend growth rate of 8%. Each share of stock just received an annual \$3.24 dividend. The appropriate discount rate is 15%. What is the value of the common stock?

$$D_{1} = \$3.24(1+.08) = \$3.50$$
$$V_{CG} = D_{1}/(k_{e} - g) = \$3.50/(.15 - .08)$$
$$= \$50$$

4-35

The zero growth model assumes that dividends will grow forever at the rate g = 0.

$$V_{ZG} = \frac{D_1}{(1 + k_e)^1} + \frac{D_2}{(1 + k_e)^2} + \dots + \frac{D_{\infty}}{(1 + k_e)^{\infty}}$$



D₁: Dividend paid at time 1.
 k_e: Investor's required return.

Stock ZG has an expected growth rate of 0%. Each share of stock just received an annual \$3.24 dividend per share. The appropriate discount rate is 15%. What is the value of the common stock?

$$D_1 = $3.24(1+0) = $3.24$$

.....

$$V_{ZG} = D_1 / (k_e - 0) = \frac{3.24}{1.15 - 0}$$

= \\$21.60

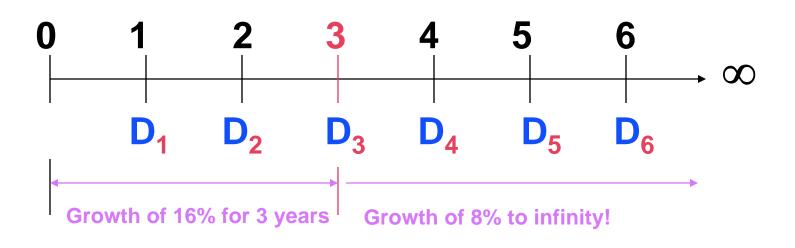
The growth phases model assumes that dividends for each share will grow at two or more *different* growth rates.

$$V = \sum_{t=1}^{n} \frac{D_0(1+\frac{1}{2})^t}{(1+k_e)^t} + \sum_{t=n+1}^{\infty} \frac{D_n(1+\frac{1}{2})^t}{(1+k_e)^t}$$

Note that the second phase of the growth phases model assumes that dividends will grow at a constant rate g₂. We can rewrite the formula as:

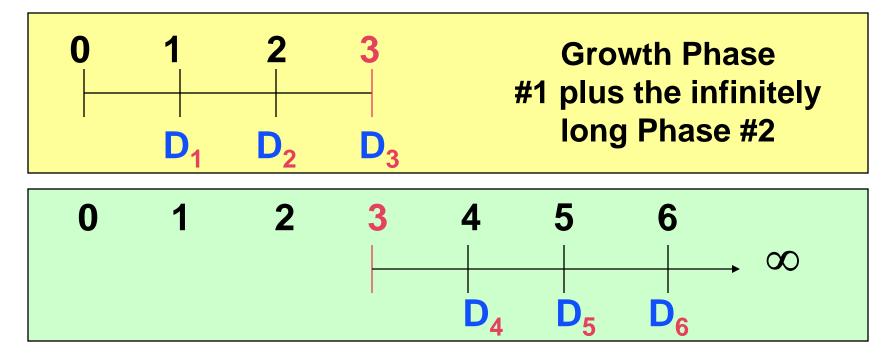
$$V = \sum_{t=1}^{n} \frac{D_0(1+g_1)^t}{(1+k_e)^t} + \left[\frac{1}{(1+k_e)^n}\right] \frac{D_{n+1}}{(k_e-g_2)}$$

Stock GP has an expected growth rate of 16% for the first 3 years and 8% thereafter. Each share of stock just received an annual \$3.24 dividend per share. The appropriate discount rate is 15%. What is the value of the common stock under this scenario?



Stock GP has two phases of growth. The first, 16%, starts at time t=0 for 3 years and is followed by 8% thereafter starting at time t=3. We should view the time line as two separate time lines in the valuation.

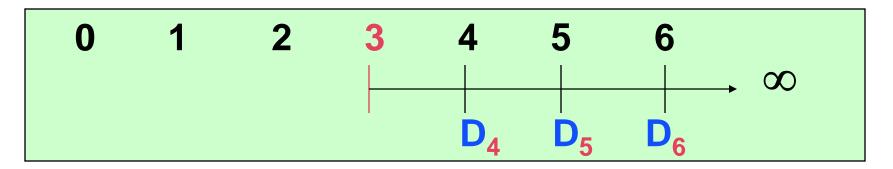
Growth Phases Model Example



Note that we can value Phase #2 using the Constant Growth Model

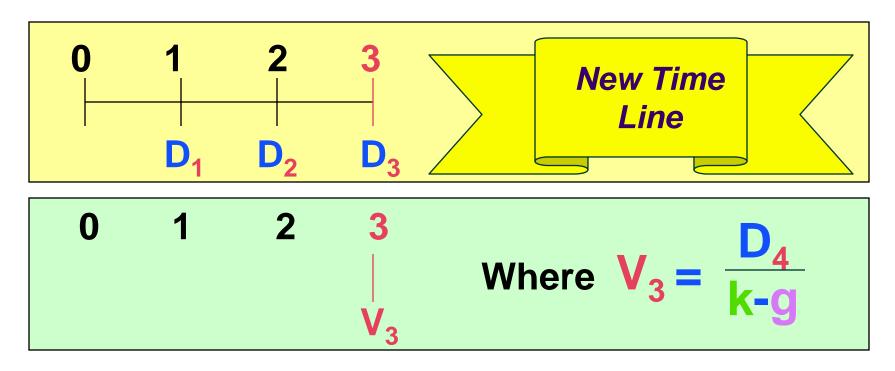
$$V_3 = \frac{D_4}{k-g}$$

We can use this model because dividends grow at a constant 8% rate beginning at the end of Year 3.

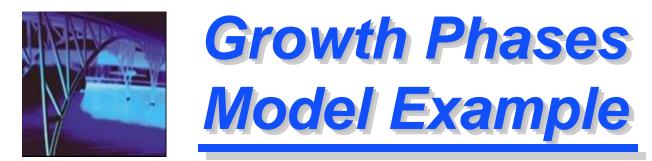


Note that we can now replace <u>all</u> dividends from year 4 to infinity with the value at time t=3, V_3 ! Simpler!!

Growth Phases Model Example



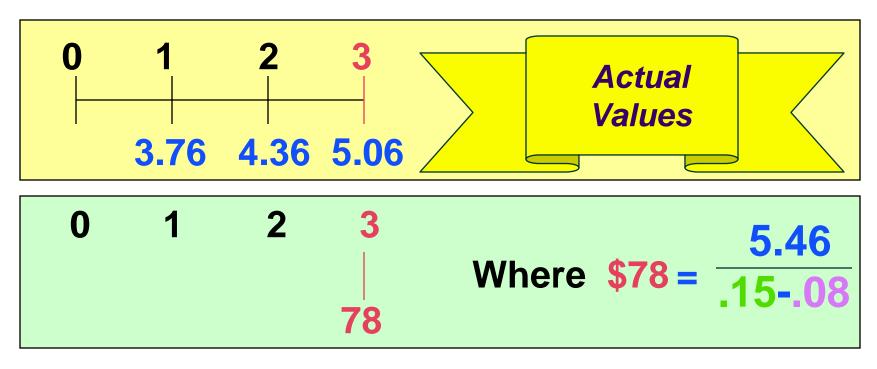
Now we only need to find the first four dividends to calculate the necessary cash flows.



Determine the annual dividends.

- $D_0 = \$3.24$ (this has been paid already) $D_1 = D_0(1+g_1)^1 = \$3.24(1.16)^1 = \3.76 $D_2 = D_0(1+g_1)^2 = \$3.24(1.16)^2 = \4.36 $D_3 = D_0(1+g_1)^3 = \$3.24(1.16)^3 = \5.06
- $D_4 = D_3(1+g_2)^1 = $5.06(1.08)^1 = 5.46

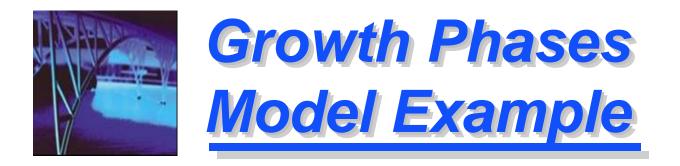
Growth Phases Model Example



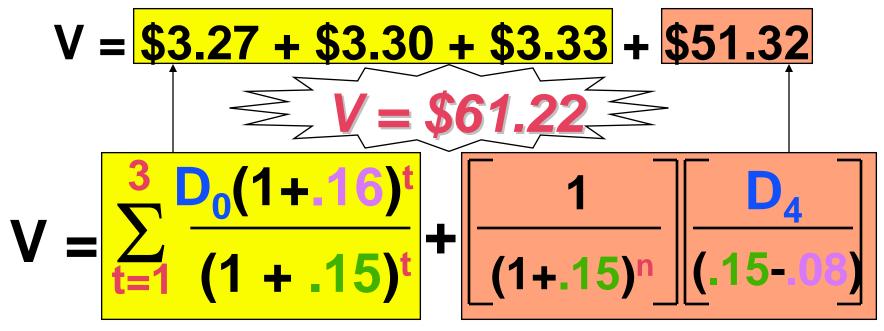
Now we need to find the present value of the cash flows.

4-47

We determine the PV of cash flows. $PV(D_1) = D_1(PVIF_{15\%, 1}) =$ \$3.76(.870) = \$3.27 $PV(D_2) = D_2(PVIF_{15\%, 2}) =$ \$4.36(.756) = \$3.30 $PV(D_3) = D_3(PVIF_{15\%, 3}) =$ \$5.06 (.658) = \$3.33 $P_3 =$ \$5.46 / (.15 - .08) = \$78 [CG Model] $PV(P_3) = P_3(PVIF_{15\%, 3}) = \$78(.658) = \$51.32$



Finally, we calculate the *intrinsic value* by summing all of cash flow present values.

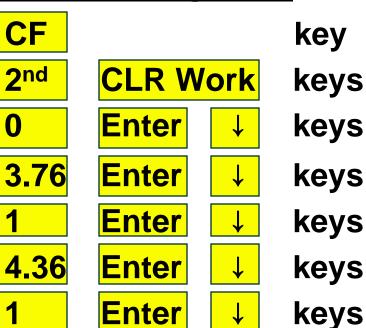


Steps in the Process (Page 1)

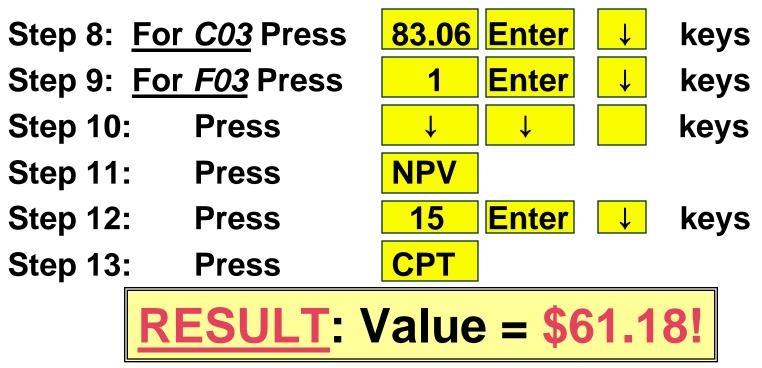
0

1

- Step 1: Press
- Step 2: Press
- Step 3: For CF0 Press
- Step 4: For C01 Press
- Step 5: For F01 Press
- Step 6: For CO2 Press
- Step 7: For F02 Press



Steps in the Process (Page 2)

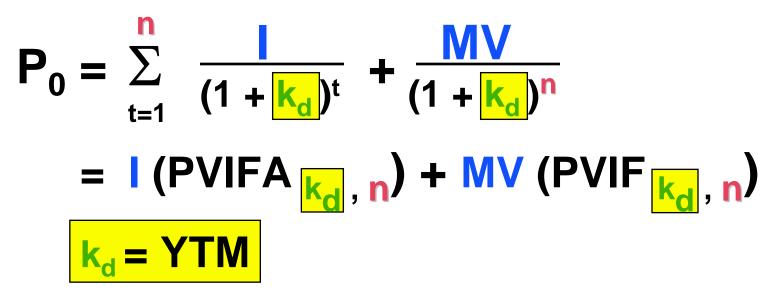


(Actual - rounding error in tables)

Steps to calculate the rate of return (or Yield).

- 1. Determine the expected cash flows.
- 2. Replace the intrinsic value (V) with the market price (P₀).
- 3. Solve for the *market required rate of return* that equates the discounted cash flows to the market price.

Determine the Yield-to-Maturity (YTM) for the annual coupon paying bond with a finite life.



Determining the YTM

Julie Miller want to determine the YTM for an issue of outstanding bonds at *Basket Wonders (BW)*. *BW* has an issue of 10% annual coupon bonds with 15 years left to maturity. The bonds have a current market value of \$1,250.

What is the YTM?

YTM Solution (Try 9%)

- $(1,250 = $100(PVIFA_{9\%,15}) + $1,000(PVIF_{9\%,15}))$
- 1,250 = 100(8.061) + 1,000(.275)
- \$1,250 = \$806.10 + \$275.00
 - ≠ \$1,081.10
 [Rate is too high!]

YTM Solution (Try 7%)

- $(1,250 = $100(PVIFA_{7\%,15}) + $1,000(PVIF_{7\%,15}))$
- 1,250 = 100(9.108) + 1,000(.362)
- \$1,250 = \$910.80 + \$362.00

YTM Solution (Interpolate)

$$.02 \begin{bmatrix} .07 & \$1,273 \\ IRR & \$1,250 \end{bmatrix}$$
$$.09 & \$1,081 \end{bmatrix}$$

$$\frac{X}{.02} = \frac{$23}{$192}$$

YTM Solution (Interpolate)

YTM Solution (Interpolate)

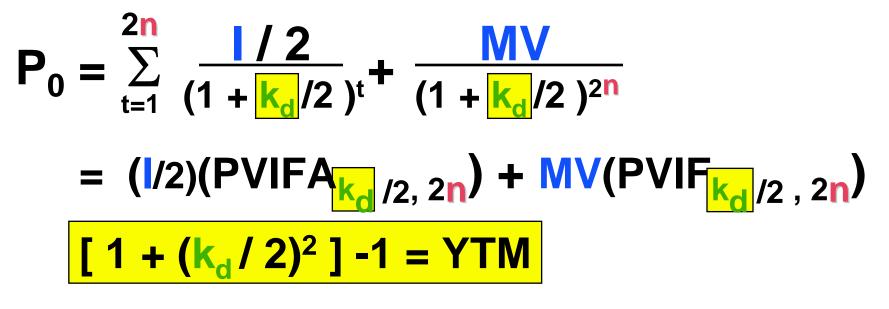
$$X = \frac{(\$23)(0.02)}{\$192}$$
 $X = .0024$

YTM = .07 + .0024 = .0724 or 7.24%

- N: 15-year annual bond
- I/Y: Compute -- Solving for the annual YTM
- PV: Cost to purchase is \$1,250
- PMT: \$100 annual interest (10% x \$1,000 face value)
- FV: \$1,000 (investor receives face value in 15 years)

Determining Semiannual Coupon Bond YTM

Determine the Yield-to-Maturity (YTM) for the semiannual coupon paying bond with a finite life.



Determining the Semiannual Coupon Bond YTM

Julie Miller want to determine the YTM for another issue of outstanding bonds. *The firm* has an issue of 8% <u>semiannual coupon</u> bonds with 20 years left to maturity. The bonds have a current market value of \$950.

What is the YTM?

- N: 20-year semiannual bond (20 x 2 = 40)
- I/Y: Compute -- Solving for the semiannual yield now
- **PV:** Cost to purchase is \$950 today
- PMT: \$40 annual interest (8% x \$1,000 face value / 2)
- FV: \$1,000 (investor receives face value in 15 years)

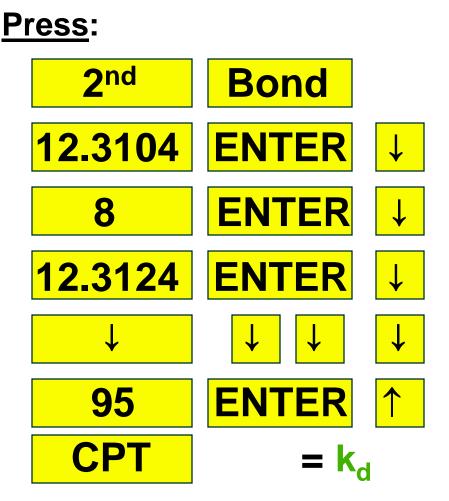
Determining Semiannual Coupon Bond YTM

Determine the Yield-to-Maturity (YTM) for the semiannual coupon paying bond with a finite life.

$$[1 + (k_d/2)^2] - 1 = YTM$$

Note: make sure you utilize the calculator answer in its DECIMAL form.

Solving the Bond Problem



This technique will calculate k_d. You must then substitute it into the following formula.

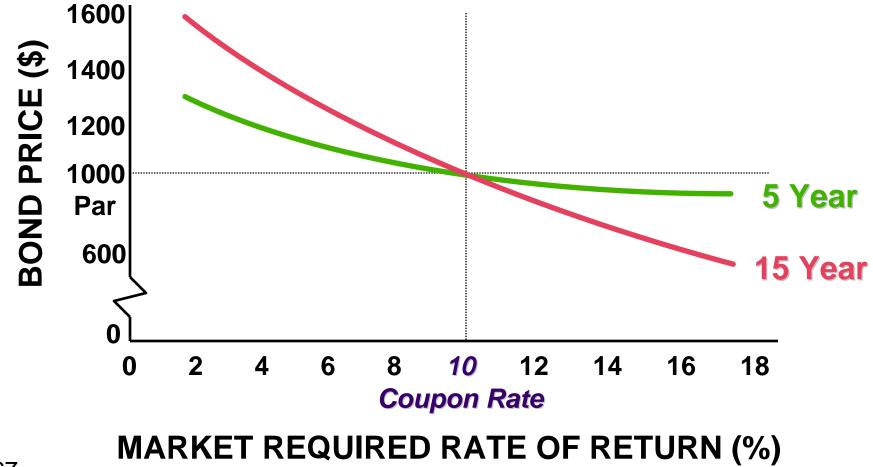
$$[1 + (k_d / 2)^2] - 1 = YTM$$

 $[1 + (.0852514/2)^{2}] - 1 = .0871$ or 8.71% (same result!)

Discount Bond -- The market required rate of return exceeds the coupon rate (Par > P_0).

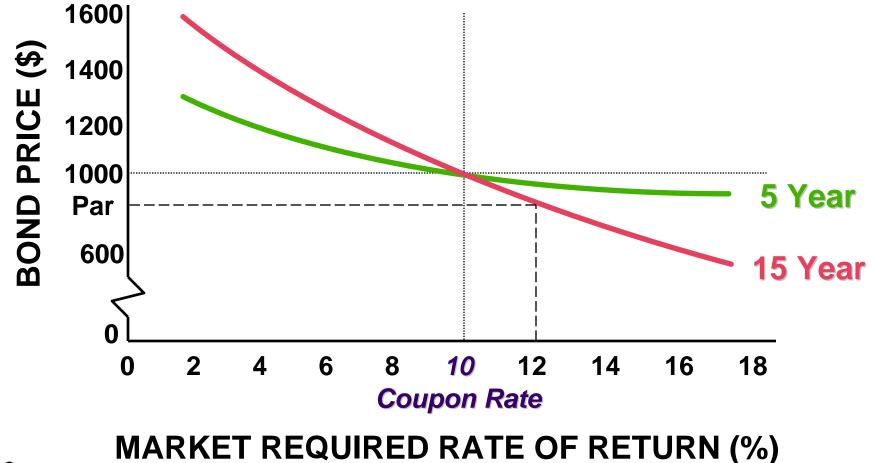
<u>Premium Bond</u> -- The coupon rate exceeds the market required rate of return ($P_0 > Par$).

Par Bond -- The coupon rate equals the market required rate of return ($P_0 = Par$). 4-66



When interest rates **rise**, then the market required rates of return **rise** and bond prices will **fall**.

Assume that the required rate of return on a 15 year, 10% annual coupon paying bond rises from 10% to 12%. What happens to the bond price?



The required rate of return on a 15 year, 10% annual coupon paying bond has *risen* from 10% to 12%.

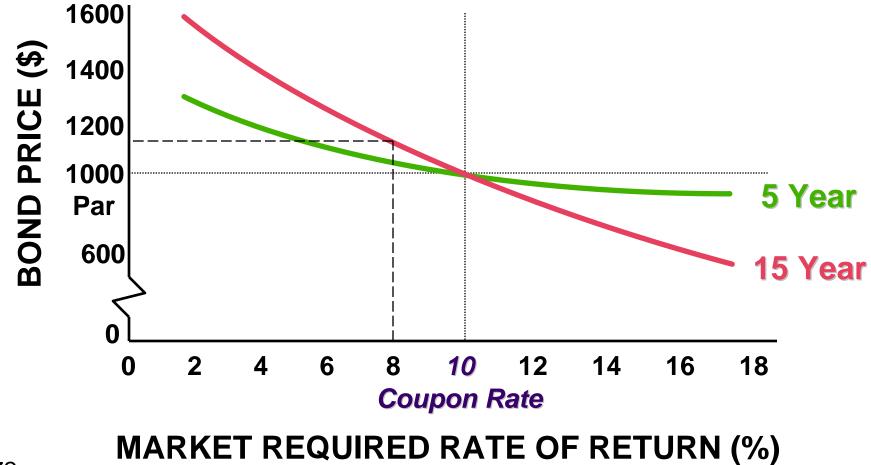
Therefore, the bond price has *fallen* from \$1,000 to \$864.

(\$863.78 on calculator)

Bond Price-Yield Relationship

When interest rates *fall*, then the market required rates of return *fall* and bond prices will *rise*.

Assume that the required rate of return on a 15 year, 10% annual coupon paying bond *falls* from 10% to 8%. What happens to the bond price?



Bond Price-Yield Relationship (Declining Rates)

The required rate of return on a 15 year, 10% coupon paying bond has *fallen* from 10% to 8%.

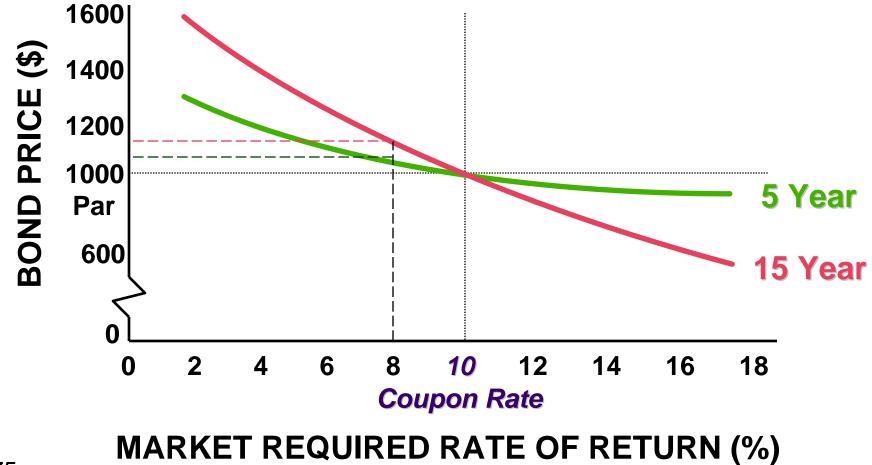
Therefore, the bond price has risen from \$1000 to \$1171.

(\$1,171.19 on calculator)

The Role of Bond Maturity

The longer the bond maturity, the greater the change in bond price for a given change in the market required rate of return.

Assume that the required rate of return on both the 5 and 15 year, 10% annual coupon paying bonds *fall* from 10% to 8%. What happens to the changes in bond prices?



The required rate of return on both the 5 and 15 year, 10% annual coupon paying bonds has *fallen* from 10% to 8%.

The 5 year bond price has *risen* from \$1,000 to \$1,080 for the 5 year bond (+8.0%).

The 15 year bond price has *risen* from \$1,000 to \$1,171 (+17.1%). *Twice as fast!*

For a given change in the market required rate of return, the price of a bond will change by proportionally more, the <u>lower the coupon rate</u>.

Assume that the market required rate of return on two equally risky 15 year bonds is 10%. The annual coupon rate for Bond H is 10% and Bond L is 8%.

What is the rate of change in each of the bond prices if market required rates fall to 8%?

The price on Bond H and L prior to the change in the market required rate of return is \$1,000 and \$848 respectively.

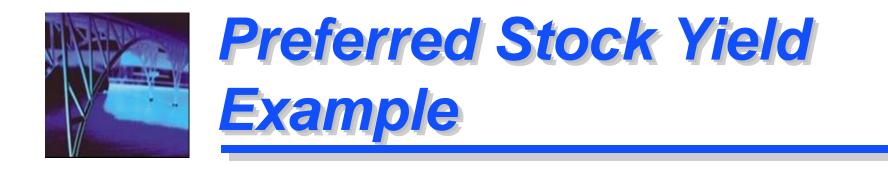
The price for **Bond H** will rise from \$1,000 to \$1,171 (+17.1%).

The price for Bond L will rise from \$848 to \$1,000 (+17.9%). *Faster Increase!*

Determine the yield for preferred stock with an infinite life.

 $P_0 = Div_P / k_P$

Solving for k_P such that $k_P = Div_P / P_0$

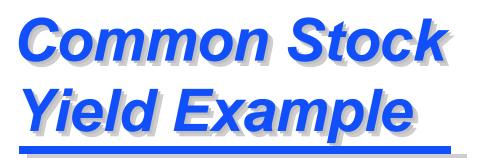


Assume that the annual dividend on each share of preferred stock is \$10. Each share of preferred stock is currently trading at \$100. What is the yield on preferred stock?

$$k_P = \$10 / \$100.$$

 $k_P = 10\%.$

Assume the constant growth model is appropriate. Determine the yield on the common stock. $P_{0} = D_{1} / (k_{e} - g)$ Solving for k_e such that $k_{o} = (D_{1} / P_{0}) + g$



Assume that the expected dividend (D₁) on each share of common stock is \$3. Each share of common stock is currently trading at \$30 and has an expected growth rate of 5%. What is the yield on common stock?