

Chapter 4

The Valuation of Long-Term Securities

© Pearson Education Limited 2004
Fundamentals of Financial Management, 12/e
Created by: Gregory A. Kuhlemeyer, Ph.D.
Carroll College, Waukesha, WI

After studying Chapter 4, you should be able to:

1. Distinguish among the various terms used to express value.
2. Value bonds, preferred stocks, and common stocks.
3. Calculate the rates of return (or yields) of different types of long-term securities.
4. List and explain a number of observations regarding the behavior of bond prices.

The Valuation of Long-Term Securities

- Distinctions Among Valuation Concepts
- Bond Valuation
- Preferred Stock Valuation
- Common Stock Valuation
- Rates of Return (or Yields)

What is Value?

-Liquidation value represents the amount of money that could be realized if an asset or group of assets is sold separately from its operating organization.

- Going-concern value represents the amount a firm could be sold for as a continuing operating business.

What is Value?

-Book value represents either
(1) an asset: the accounting value of an asset -- the asset's cost minus its accumulated depreciation;
(2) a firm: total assets minus liabilities and preferred stock as listed on the balance sheet.

What is Value?

- Market value represents the market price at which an asset trades.
\bullet Intrinsic value represents the price a security "ought to have" based on all factors bearing on valuation.

Bond Valuation

- Important Terms
- Types of Bonds
- Valuation of Bonds
- Handling Semiannual Compounding

Important Bond Terms

- A bond is a long-term debt instrument issued by a corporation or government.
- The maturity value (MV) [or face value] of a bond is the stated value. In the case of a U.S. bond, the face value is usually $\mathbf{\$ 1 , 0 0 0}$.

Important Bond Terms

- The bond's coupon rate is the stated rate of interest; the annual interest payment divided by the bond's face value.
- The discount rate (capitalization rate) is dependent on the risk of the bond and is composed of the risk-free rate plus a premium for risk.

Different Types of Bonds

A perpetual bond is a bond that never matures. It has an infinite life.

$$
V=\frac{\|}{\left(1+k_{d}\right)^{1}}+\frac{\|}{\left(1+k_{\mathrm{d}}\right)^{2}}+\ldots+\frac{\|}{\left(1+k_{\mathrm{d}}\right)^{\infty}}
$$

$$
=\sum_{t=1}^{\infty} \frac{\|}{\left(1+k_{d}\right)^{t}} \quad \text { or } \quad l\left(\text { PVIFA }_{k_{d}, \infty}\right)
$$

$$
{ }_{4-16} \mathrm{~V}=\mathrm{I} / \mathrm{l} \mathrm{k}_{\mathrm{d}}
$$

[Reduced Form]

Perpetual Bond Example

Bond P has a \$1,000 face value and provides an 8\% annual coupon. The appropriate discount rate is 10%. What is the value of the perpetual bond?

$$
\begin{aligned}
\mathrm{I} & =\$ 1,000(8 \%)=\$ 80 . \\
\mathrm{k}_{\mathrm{d}} & =10 \% . \\
\mathrm{V} & =\mathrm{I} / \mathrm{k}_{\mathrm{d}} \quad[\text { Reduced Form }] \\
& =\$ 80 / 10 \%=\$ 800 .
\end{aligned}
$$

"Tricking" the Calculator to Solve

\section*{ | \mathbf{N} | I/Y | PV | PMT | FV |
| :--- | :--- | :--- | :--- | :--- |
 Compute}

N: "Trick" by using huge N like 1,000,000!
I/Y: 10\% interest rate per period (enter as 10 NOT .10)
PV: Compute (Resulting answer is cost to purchase)
PMT: \$80 annual interest forever ($8 \% \times \$ 1,000$ face)
FV: $\quad \$ 0$ (investor never receives the face value)

Different Types of Bonds

A non-zero coupon-paying bond is a coupon paying bond with a finite life.

$$
\begin{aligned}
V & =\frac{I}{\left(1+k_{d}\right)^{1}}+\frac{I}{\left(1+k_{d}\right)^{2}}+\ldots+\frac{I+M V}{\left(1+k_{d}\right)^{n}} \\
& =\sum_{t=1}^{n} \frac{I}{\left(1+k_{d}\right)^{n}}+\frac{M V}{\left(1+k_{d}\right)^{n}} \\
V & =I\left(\text { PVIFA }_{k_{d}, n}\right)+\text { MV }\left(\text { PVIF }_{k_{d}, n}\right)
\end{aligned}
$$

Coupon Bond Example

Bond C has a \$1,000 face value and provides an 8% annual coupon for 30 years. The appropriate discount rate is 10%. What is the value of the coupon bond?

```
\(\mathrm{V}=\$ 80\left(\right.\) PVIFA \(\left._{10 \%, 30}\right)+\$ 1,000\left(\right.\) PVIF \(\left._{10 \%, 30}\right)\)
                \(=\$ 80(9.427)+\$ 1,000(.057)\)
                [Table IV] [Table II]
= \$754.16 + \$57.00
= \$811.16.
```


Solving the Coupon Bond on the Calculator

Inputs	30	10		80	\$1,000
	\mathbf{N}	I/Y	PV	PMT	FV
Compute		-811.46		(Actual, rounding error in tables)	

N: 30-year annual bond
I/Y: 10\% interest rate per period (enter as 10 NOT .10)
PV: Compute (Resulting answer is cost to purchase)
PMT: \$80 annual interest ($8 \% \times \$ 1,000$ face value)
FV: $\quad \$ 1,000$ (investor receives face value in 30 years)

Different Types of Bonds

A zero coupon bond is a bond that pays no interest but sells at a deep discount from its face value; it provides compensation to investors in the form of price appreciation.

$$
V=\frac{M V}{\left(1+k_{d}\right)^{n}}=M V\left(P V I F_{k_{d}, n}\right)
$$

Zero-Coupon Bond Example

Bond Z has a $\$ 1,000$ face value and a 30 year life. The appropriate discount rate is 10%. What is the value of the zero-coupon bond?

$$
\begin{aligned}
\mathrm{V} & =\$ 1,000\left(\mathrm{PVIF}_{10 \%}, 30\right) \\
& =\$ 1,000(.057) \\
& =\$ 57.00
\end{aligned}
$$

Solving the Zero-Coupon Bond on the Calculator

Inputs	30	10		0 +\$1,000	
	\mathbf{N}	I/Y	PV	PMT	FV
Compute			-57.31	(Actual error	unding bles)

N: 30-year zero-coupon bond
I/Y: 10\% interest rate per period (enter as 10 NOT .10)
PV: Compute (Resulting answer is cost to purchase)
PMT: \$0 coupon interest since it pays no coupon
FV: $\quad \$ 1,000$ (investor receives only face in $\mathbf{3 0}$ years)

Semiannual Compounding

Most bonds in the U.S. pay interest twice a year (1/2 of the annual coupon).

Adjustments needed:
(1) Divide k_{d} by 2
(2) Multiply n by 2
(3) Divide I by 2

Semiannual Compounding

A non-zero coupon bond adjusted for semiannual compounding.

$$
\begin{aligned}
\mathrm{V} & =\frac{1 / 2}{\left(1+\sqrt{\left.k_{d} / 2\right)^{1}}\right)^{1}}+\frac{1 / 2}{\left(1+\mathrm{k}_{\mathrm{d}} / 2\right)^{2}}+\ldots+\frac{1 / 2+\mathrm{MV}}{\left(1+\mathrm{k}_{\mathrm{d}} / 2\right)^{2 * n}} \\
& =\sum_{\mathrm{t}=1}^{2^{*} n} \frac{1 / 2}{\left(1+\mathrm{k}_{\mathrm{d}} / 2\right)^{\mathrm{t}}}+\frac{\mathrm{MV}}{\left(1+\mathrm{k}_{\mathrm{d}} / 2\right)^{2 * n}} \\
& =1 / 2\left(\text { PVIFA }_{\mathrm{k}_{\mathrm{d}} / 2,2^{* n}}\right)+\mathrm{MV}\left(\text { PVIF }_{\mathrm{k}_{\mathrm{d}} / 2,2^{*} \mathrm{n}}\right)
\end{aligned}
$$

Semiannual Coupon Bond Example

Bond C has a \$1,000 face value and provides an 8% semiannual coupon for 15 years. The appropriate discount rate is 10% (annual rate).

What is the value of the coupon bond?

$$
\begin{aligned}
\mathrm{V} \quad & =\$ 40\left(\mathrm{PVIFA}_{5 \%, 30}\right)+\$ 1,000\left(\text { PVIF }_{5 \%, 30}\right) \\
= & \$ 40(15,373)+\$ 1,000(.231) \\
& {[\text { Table IV] } \quad[\text { Table II }]} \\
= & \$ 614.92+\$ 231.00 \\
= & \$ 845.92
\end{aligned}
$$

The Semiannual Coupon Bond on the Calculator

Inputs	30	5		40 +\$1,000	
	N	I/Y	PV	PMT	FV
Compute			-846.28	(Actual	unding

N: 15-year semiannual coupon bond (15 x $2=30$)
I/Y: $\quad 5 \%$ interest rate per semiannual period (10 / $2=5$)
PV: Compute (Resulting answer is cost to purchase)
PMT: \$40 semiannual coupon (\$80 / 2 = \$40)
FV: $\quad \$ 1,000$ (investor receives face value in 15 years)

Semiannual Coupon Bond Example

Let us use another worksheet on your calculator to solve this problem. Assume that Bond C was purchased (settlement date) on 12-31-2004 and will be redeemed on 12-31-2019. This is identical to the 15year period we discussed for Bond C.

What is its percent of par? What is the value of the bond?

Solving the Bond Problem

Press:

$2^{\text {nd }}$

12.3104

ENTER

\square ENTER

\square ENTER

10

ENTER \downarrow

1. What is its percent of par?
2. What is the value of the bond?

- 84.628\% of par (as quoted in financial papers)
-84.628\% x \$1,000 face value $=\$ 846.28$

Preferred Stock Valuation

Preferred Stock is a type of stock
that promises a (usually) fixed dividend, but at the discretion of the board of directors.

Preferred Stock has preference over common stock in the payment of dividends and claims on assets.

Preferred Stock Valuation

$$
\begin{aligned}
V & =\frac{\operatorname{Div}_{P}}{\left(1+k_{P}\right)^{1}}+\frac{\operatorname{Div}_{P}}{\left(1+k_{P}\right)^{2}}+\ldots+\frac{\text { Div }_{P}}{\left(1+k_{P}\right)^{\infty}} \\
& =\sum_{t=1}^{\infty} \frac{\text { Div }_{P}}{\left(1+k_{P}\right)^{t}} \quad \text { or } \operatorname{Div}_{P}\left(\text { PVIFA }_{k_{p}, \infty}\right)
\end{aligned}
$$

This reduces to a perpetuity!

$$
\mathrm{V}=\operatorname{Div}_{\mathrm{p}} / \mathrm{k}_{\mathrm{p}}
$$

Preferred Stock Example

Stock PS has an 8\%, \$100 par value issue outstanding. The appropriate discount rate is 10%. What is the value of the preferred stock?

$$
\begin{array}{ll}
\operatorname{Div}_{\mathrm{P}} & =\$ 100(8 \%)=\$ 8.00 \\
\mathrm{k}_{\mathrm{p}} & =10 \% . \\
\mathrm{V} & =\operatorname{Div}_{\mathrm{p}} / \mathrm{k}_{\mathrm{p}}=\$ 8.00 / 10 \% \\
& =\$ 80
\end{array}
$$

Common Stock Valuation

Common stock represents a residual ownership position in the corporation.

- Pro rata share of future earnings after all other obligations of the firm (if any remain).
- Dividends may be paid out of the pro rata share of earnings.

Common Stock Valuation

What cash flows will a shareholder receive when owning shares of common stock?

(1) Future dividends
(2) Future sale of the common stock shares

Dividend Valuation Model

Basic dividend valuation model accounts for the PV of all future dividends.

$$
\begin{aligned}
V & =\frac{\text { Div }_{1}}{\left(1+k_{e}\right)^{1}}+\frac{\text { Div }_{2}}{\left(1+k_{e}\right)^{2}}+\ldots+\frac{\text { Div }_{\infty}}{\left(1+k_{e}\right)^{\infty}} \\
& =\sum_{t=1}^{\infty} \frac{\text { Div }_{t}}{\left(1+k_{e}\right)^{t}} \quad \begin{array}{ll}
\text { Div }_{t}: \begin{array}{l}
\text { Cash Dividend } \\
\text { at time } t
\end{array} \\
k_{e}: \begin{array}{l}
\text { Equity investor's } \\
\text { required return }
\end{array}
\end{array}
\end{aligned}
$$

Adjusted Dividend Valuation Model

The basic dividend valuation model adjusted for the future stock sale.

$$
\mathrm{V}=\frac{\text { Div }_{1}}{\left(1+k_{e}\right)^{1}}+\frac{\text { Div }_{2}}{\left(1+k_{e}\right)^{2}}+\ldots+\frac{\text { Div }_{n}+\text { Price }_{n}}{\left(1+k_{e}\right)^{n}}
$$

The year in which the firm's shares are expected to be sold.
Price n : The expected share price in year n.

Dividend Growth Pattern Assumptions

The dividend valuation model requires the forecast of all future dividends. The
following dividend growth rate assumptions simplify the valuation process.

Constant Growth

No Growth

Growth Phases

Constant Growth Model

The constant growth model assumes that dividends will grow forever at the rate g.

$$
V=\frac{D_{0}(1+g)}{\left(1+k_{e}\right)^{1}}+\frac{D_{0}(1+g)^{2}}{\left(1+k_{e}\right)^{2}}+\ldots+\frac{D_{0}(1+g)^{\infty}}{\left(1+k_{e}\right)^{\infty}}
$$

D_{1} : \quad Dividend paid at time 1.
g: The constant growth rate.
k_{e} : Investor's required return.

Constant Growth Model Example

Stock CG has an expected dividend growth rate of 8\%. Each share of stock just received an annual $\$ 3.24$ dividend. The appropriate discount rate is 15%. What is the value of the common stock?
$\mathrm{D}_{1}=\$ 3.24(1+.08)=\$ 3.50$
$V_{C G}=D_{1} I\left(k_{e}-g\right)=\$ 3.50 /(.15-.08)$
= \$50

Zero Growth Model

The zero growth model assumes that dividends will grow forever at the rate $\mathrm{g}=0$.

$$
V_{z G}=\frac{D_{1}}{\left(1+k_{e}\right)^{1}}+\frac{D_{2}}{\left(1+k_{e}\right)^{2}}+\ldots+\frac{D_{\infty}}{\left(1+k_{e}\right)^{\infty}}
$$

D_{1} : Dividend paid at time 1.
k_{e} : Investor's required return.

Zero Growth Model Example

Stock ZG has an expected growth rate of 0\%. Each share of stock just received an annual $\$ 3.24$ dividend per share. The appropriate discount rate is 15\%. What is the value of the common stock?

$$
\begin{aligned}
\mathrm{D}_{1} & =\$ 3.24(1+0)=\$ 3.24 \\
\mathrm{~V}_{\mathrm{ZG}} & =\mathrm{D}_{1} I\left(\mathrm{k}_{\mathrm{e}}-0\right)=\$ 3.24 /(.15-0) \\
& =\$ 21.60
\end{aligned}
$$

Growth Phases Model

The growth phases model assumes that dividends for each share will grow at two or more different growth rates.

$$
\mathbf{V}=\sum_{t=1}^{n} \frac{D_{0}\left(1+g_{1}\right)^{t}}{\left(1+k_{e}\right)^{t}}+\sum_{t=n+1}^{\infty} \frac{D_{n}\left(1+g_{2}\right)^{t}}{\left(1+k_{e}\right)^{t}}
$$

Growth Phases Model

Note that the second phase of the growth phases model assumes that dividends will grow at a constant rate g_{2}. We can rewrite the formula as:

$$
\mathbf{V}=\sum_{t=1}^{n} \frac{D_{0}\left(1+g_{1}\right)^{t}}{\left(1+k_{e}\right)^{t}}+\left[\frac{1}{\left(1+k_{e}\right)}\right]\left[\frac{D_{n+1}}{\left(k_{e}-g_{2}\right)}\right]
$$

Growth Phases Model Example

Stock GP has an expected growth rate of 16% for the first 3 years and 8\% thereafter. Each share of stock just received an annual \$3.24 dividend per share. The appropriate discount rate is 15%. What is the value of the common stock under this scenario?

Growth Phases Model Example

Stock GP has two phases of growth. The first, 16\%, starts at time $\mathbf{t}=0$ for 3 years and is followed by 8% thereafter starting at time $t=3$. We should view the time line as two separate time lines in the valuation.

Growth Phases Model Example

Note that we can value Phase \#2 using the Constant Growth Model

Growth Phases Model Example

$\mathrm{V}_{3}=\frac{\mathrm{D}_{4}}{\mathrm{k}-\mathrm{g}}$

We can use this model because dividends grow at a constant 8\% rate beginning at the end of Year 3.

Note that we can now replace all dividends from year 4 to infinity with the value at time $t=3, V_{3}$! Simpler!!

Growth Phases Model Example

Now we only need to find the first four dividends to calculate the necessary cash flows.

Growth Phases Model Example

Determine the annual dividends.

$D_{0}=\$ 3.24$ (this has been paid already) $^{D_{1}=D_{0}\left(1+g_{1}\right)^{1}=\$ 3.24(1.16)^{1}=\$ 3.76}$
$D_{2}=D_{0}\left(1+g_{1}\right)^{2}=\$ 3.24(1.16)^{2}=\$ 4.36$
$D_{3}=D_{0}\left(1+g_{1}\right)^{3}=\$ 3.24(1.16)^{3}=\$ 5.06$
$D_{4}=D_{3}\left(1+g_{2}\right)^{1}=\$ 5.06(1.08)^{1}=\$ 5.46$

Growth Phases Model Example

Now we need to find the present value of the cash flows.

Growth Phases Model Example

We determine the PV of cash flows.

$$
\begin{gathered}
\operatorname{PV}\left(D_{1}\right)=D_{1}\left(\mathrm{PVIF}_{15 \%, 1}\right)=\$ 3.76(.870)=\$ \underline{3.27} \\
\operatorname{PV}\left(D_{2}\right)=D_{2}\left(\mathrm{PVIF}_{15 \%, 2}\right)=\$ 4.36(.756)=\$ \underline{3.30} \\
\operatorname{PV}\left(D_{3}\right)=D_{3}\left(\operatorname{PVIF}_{15 \%, 3}\right)=\$ 5.06(.658)=\$ \underline{3.33} \\
P_{3}=\$ 5.46 \text { I }(.15-.08)=\$ 78 \text { [CG Model] }
\end{gathered}
$$

$$
\operatorname{PV}\left(P_{3}\right)=P_{3}\left(\mathrm{PVIF}_{15 \%, 3}\right)=\$ 78(.658)=\$ 51.32
$$

Growth Phases Model Example

Finally, we calculate the intrinsic value by summing all of cash flow present values.

Solving the Intrinsic Value Problem using CF Registry

Steps in the Process (Page 1)

Solving the Intrinsic Value Problem using CF Registry

Steps in the Process (Page 2)

Step 8: For C03 Press	83.06	Enter	keys
Step 9: For F03 Press	1	Enter	keys
Step 10: Press	\downarrow	\downarrow	keys
Step 11: Press	NPV		
Step 12: Press	15	Enter \downarrow	keys
Step 13: Press	CPT		

RESULT: Value $=\mathbf{\$ 6 1 . 1 8 !}$
(Actual - rounding error in tables)

Calculating Rates of Return (or Yields)

Steps to calculate the rate of

 return (or Yield).1. Determine the expected cash flows.
2. Replace the intrinsic value (V) with the market price (P_{0}).
3. Solve for the market required rate of return that equates the discounted cash flows to the market price.

Determining Bond YTM

Determine the Yield-to-Maturity (YTM) for the annual coupon paying bond with a finite life.

$$
\begin{aligned}
P_{0} & =\sum_{t=1}^{n} \frac{I}{\left(1+\sqrt{k_{d}}\right)^{t}}+\frac{M V}{(1+\sqrt[k_{d}]{ })^{n}} \\
& \left.=I\left(\text { PVIFA }{ }_{k_{d}}, n\right)+\text { MV (PVIF }{ }_{\left[k_{d}\right.}, n\right) \\
k_{d} & =\text { YTM }
\end{aligned}
$$

Determining the YTM

Julie Miller want to determine the YTM for an issue of outstanding bonds at Basket Wonders (BW). BW has an issue of 10\% annual coupon bonds with 15 years left to maturity. The bonds have a current market value of $\$ 1,250$.

What is the YTM?

YTM Solution (Try 9\%)

$$
\begin{aligned}
& \$ 1,250= \begin{array}{l}
\$ 100\left(\text { PVIFA }_{9 \%, 15}\right)+ \\
\\
\$ 1,000\left(\mathrm{PVIF}_{9 \%, 15}\right)
\end{array} \\
& \$ 1,250=\begin{array}{l}
\$ 100(8.061)+ \\
\$ 1,000(.275)
\end{array},
\end{aligned}
$$

$\$ 1,250=\$ 806.10+\$ 275.00$
$\neq \$ 1,081.10$
[Rate is too high!]

YTM Solution (Try 7\%)

$\mathbf{\$ 1 , 2 5 0}=\$ 100\left(\right.$ PVIFA $\left._{7 \%, 15}\right)+$ \$1,000(PVIF ${ }_{7 \%, 15}$)
$\$ 1,250=\$ 100(9.108)+$ \$1,000(.362)
\$1,250 = \$910.80 + \$362.00
$\neq \$ 1,272.80$ [Rate is too low!]

YTM Solution (Interpolate)

$$
\begin{aligned}
& .02\left[\begin{array}{c}
\times\left[\begin{array}{cc}
.07 & \$ 1,273 \\
\operatorname{IRR} & \$ 1,250
\end{array}\right] \$ 23 \\
.09 \$ 1,081
\end{array}\right] \$ 192 \\
& \frac{x}{.02}=\frac{\$ 23}{\$ 192}
\end{aligned}
$$

YTM Solution (Interpolate)

$.02\left[\begin{array}{cc}\times\left[\begin{array}{cc}.07 & \$ 1,273 \\ \operatorname{RR} & \$ 1,250\end{array}\right] \$ 23 \\ .09 & \$ 1,081\end{array}\right] \$ 192$
$\frac{x}{.02}=\frac{\$ 23}{\$ 192}$

YTM Solution (Interpolate)

$$
.02\left[\begin{array}{ccc}
\times\left[\begin{array}{ccc}
.07 & \$ 1273 & \\
\text { YTM } & \$ 1250
\end{array}\right] \$ 23 \\
.09 & \$ 1081
\end{array}\right] \$ 192
$$

$$
X=\frac{(\$ 23)(0.02)}{\$ 192} \quad X=.0024
$$

$\mathrm{YTM}=.07+.0024=.0724$ or 7.24%

YTM Solution on the Calculator

Inputs	15	-1,250		100	+\$1,000
	N	I/Y	PV	PMT	FV
Compute		7.22\%	actua	YTM)	

N: 15-year annual bond
I/Y: Compute -- Solving for the annual YTM
PV: Cost to purchase is $\mathbf{\$ 1 , 2 5 0}$
PMT: \$100 annual interest ($10 \% \times \mathbf{1 , 0 0 0}$ face value)
FV: $\quad \$ 1,000$ (investor receives face value in 15 years)

Determining Semiannual Coupon Bond YTM

Determine the Yield-to-Maturity (YTM) for the semiannual coupon paying bond with a finite life.

$$
\begin{aligned}
P_{0} & =\sum_{t=1}^{2 n} \frac{1 / 2}{\left(1+\left[\underline{k d}_{d} / 2\right)^{)^{2}}\right.}+\frac{M V}{\left(1+\left[{\left.\underline{k_{d}} / 2\right)^{2 n}}^{2}\right.\right.} \\
& =(1 / 2)\left(\text { PVIFA }_{k_{d}} / 2,2 n\right)+M V\left(\text { PVIF }_{k_{d} / 2,2 n}\right) \\
& {\left[1+\left(k_{d} / 2\right)^{2}\right]-1=\text { YTM } }
\end{aligned}
$$

Determining the Semiannual Coupon Bond YTM

Julie Miller want to determine the YTM for another issue of outstanding bonds. The firm has an issue of 8\% semiannual coupon bonds with 20 years left to maturity. The bonds have a current market value of $\$ 950$.
What is the YTM?

YTM Solution on the Calculator

N: 20-year semiannual bond (20 x $2=40$)
I/Y: Compute -- Solving for the semiannual yield now
PV: Cost to purchase is $\$ 950$ today
PMT: \$40 annual interest ($8 \% \times \$ 1,000$ face value / 2)
FV: $\quad \$ 1,000$ (investor receives face value in 15 years)

Determining Semiannual Coupon Bond YTM

Determine the Yield-to-Maturity (YTM) for the semiannual coupon paying bond with a finite life.

$$
\left[1+\left(k_{d} / 2\right)^{2}\right]-1=\text { YTM }
$$

$$
\begin{gathered}
{\left[1+(.042626)^{2}\right]-1=.0871} \\
\text { or } 8.71 \%
\end{gathered}
$$

Solving the Bond Problem

㙁 Texas Instruments

Press:

$2^{\text {nd }}$
 Bond
 12.3104
 ENTER

ENTER \downarrow 12.3124 ENTER \downarrow

$\mathbf{9 5}$
CPT

Determining Semiannual Coupon Bond YTM

This technique will calculate k_{d}. You must then substitute it into the following formula.

$$
\left[1+\left(k_{d} / 2\right)^{2}\right]-1=\text { YTM }
$$

[1 + (.0852514/2) ${ }^{2}$]-1 = . 0871 or 8.71\% (same result!)

Bond Price - Yield Relationship

Discount Bond -- The market required rate of return exceeds the coupon rate (Par $>\mathrm{P}_{0}$).
Premium Bond -- The coupon rate exceeds the market required rate of return ($\mathrm{P}_{0}>\mathrm{Par}$).
Par Bond -- The coupon rate equals the market required rate of return ($\mathrm{P}_{0}=\mathrm{Par}$). 4-66

Bond Price - Yield Relationship

MARKET REQUIRED RATE OF RETURN (\%)

Bond Price-Yield Relationship

When interest rates rise, then the market required rates of return rise and bond prices will fall.

Assume that the required rate of return on a 15 year, 10% annual coupon paying bond rises from 10% to 12%. What happens to the bond price?

MARKET REQUIRED RATE OF RETURN (\%)

Bond Price-Yield Relationship (Rising Rates)

The required rate of return on a 15 year, 10\% annual coupon paying bond has risen from 10% to 12%.

Therefore, the bond price has fallen from \$1,000 to \$864.
(\$863.78 on calculator)

Bond Price-Yield Relationship

When interest rates fall, then the market required rates of return fall and bond prices will rise.

Assume that the required rate of return on a 15 year, 10\% annual coupon paying bond falls from 10% to 8\%. What happens to the bond price?

MARKET REQUIRED RATE OF RETURN (\%)

Bond Price-Yield Relationship (Declining Rates)

The required rate of return on a 15 year, 10% coupon paying bond has fallen from 10\% to 8\%.

Therefore, the bond price has risen from \$1000 to \$1171.
(\$1,171.19 on calculator)

The Role of Bond Maturity

The longer the bond maturity, the greater the change in bond price for a given change in the market required rate of return.

Assume that the required rate of return on both the 5 and 15 year, 10\% annual coupon paying bonds fall from 10\% to 8\%. What happens to the changes in bond prices?

MARKET REQUIRED RATE OF RETURN (\%)

The Role of Bond Maturity

The required rate of return on both the 5 and 15 year, 10% annual coupon paying bonds has fallen from 10\% to 8\%.

The 5 year bond price has risen from \$1,000 to \$1,080 for the 5 year bond (+8.0\%).
The 15 year bond price has risen from \$1,000 to \$1,171 (+17.1\%). Twice as fast!

The Role of the Coupon Rate

For a given change in the

 market required rate of return, the price of a bond will change by proportionally more, the lower the coupon rate.

Example of the Role of the Coupon Rate

Assume that the market required rate of return on two equally risky 15 year bonds is 10%. The annual coupon rate for Bond H is 10% and $B o n d L$ is 8%.

What is the rate of change in each of the bond prices if market required rates fall to 8% ?

 Example of the Role of the Coupon Rate

The price on Bond H and L prior to the change in the market required rate of return is $\$ 1,000$ and $\$ 848$ respectively.

The price for Bond H will rise from $\mathbf{\$ 1 , 0 0 0}$ to \$1,171 (+17.1\%).

The price for Bond L will rise from $\$ 848$ to \$1,000 (+17.9\%). Faster Increase!

Determining the Yield on Preferred Stock

Determine the yield for preferred stock with an infinite life.

$$
P_{0}=\operatorname{Div}_{P} / k_{P}
$$

Solving for k_{p} such that

$$
\mathrm{k}_{\mathrm{P}}=\operatorname{Div}_{\mathrm{p}} I \mathrm{P}_{0}
$$

Preferred Stock Yield Example

Assume that the annual dividend on each share of preferred stock is \$10. Each share of preferred stock is currently trading at $\$ 100$. What is the yield on preferred stock?

$$
\begin{gathered}
k_{p}=\$ 10 / \$ 100 . \\
k_{P}=10 \% .
\end{gathered}
$$

 Determining the Yield on Common Stock

Assume the constant growth model is appropriate. Determine the yield on the common stock.

$$
P_{0}=D_{1} I\left(k_{e}-g\right)
$$

Solving for k_{e} such that

$$
k_{e}=\left(D_{1} / P_{0}\right)+g
$$

Common Stock Yield Example

Assume that the expected dividend $\left(D_{1}\right)$ on each share of common stock is $\$ 3$. Each share of common stock is currently trading at $\$ 30$ and has an expected growth rate of 5%. What is the yield on common stock?

$$
\begin{aligned}
& k_{\mathrm{e}}=(\$ 3 / \$ 30)+5 \% \\
& k_{e}=10 \%+5 \%=15 \%
\end{aligned}
$$

